
Pooh functions by category
Click on a function name for more details

• Function for numbers / numeric functions

abs sqr loge pow cos acos sin asin tan atan minint maxint minfloat maxfloat srand rand

• Function for strings

split join find left size mid right emptystring newline

• Converting strings to numbers

int hex oct

• Functions for arrays

append push pop shift unshift range reverse size join
filtercopy mapcopy mapreplace foldfirst2last foldlast2first sort

• Functions for tables

each erase exists keys size values

• Miscellaneous functions

: size defined type exit showstack dump osname trace

• Input Output and files

print println open openpipe readlines filesize stat canread canwrite canrun listdir

• Processes

openpipe run system kill

• Time related functions

time localtime gmtime sleep

• Functions for green threads (threads are also known as pooh routines)

makethread threadyieldvalue resumethread threadyield threadyield0 threadexit stopthread isthreadmain

Function for numbers

resnum = abs(~num -3.4)
resnum now has the value 3.4

resnum = abs(~num 3.4)
resnum now has the value 3.4

abs returns the absolute number of the argument num

cos(~num 180)

cos returns the cosine of the argument number, the argument number is given in radians.

acos(~num 180)

acos returns the arc cosine of the argument number, the argument number is in the range between -1
and 1; including the number -1 and 1. The program will issue an error and exit if any other value is
passed as argument.

sin(~num 180)

sin returns the sine of the argument number, the argument number is given in radians.

asin(~num 180)

asin returns the arc sine of the argument number, value in radians is returned, the return value is in the
range between -pi/2 and +pi/2;

tan(~num 180)

tan returns the tangent of the argument number, the argument number is given in radians.

atan(~num 180)

atan returns the arc tangent of the argument number, value in radians is returned, the return value is in
the range between -pi/2 and +pi/2;

val = loge(~num 1)
val has now the value 0. the function computes the natural logarithm of the argument number ~num.

val = maxfloat()
val has now the biggest possible floating point number. This is a very big number indeed.

val = minfloat()
val has now the smallest possible floating point number. This is a very small number indeed.

val = maxint()
val has now the biggest possible integer number. This is a very big number indeed.

val = minint()
val has now the smallest possible integer number. This is a very small number indeed.

val = sqr(~num 4)
val has now the value 2, which is the square root of the argument ~num

val = pow(~num 2 ~power 3)
val has now the value 8, which is argument ~num raised to the power of ~power

srand(~seed 1234)

The generator of random number is now initalised with value 1234.

val = rand(~max 42)

val has now the value of a random number between 0 and 42.

Converting strings to numbers

val = int(~string '12345')
val is now a number with value 12345, converts a decimal string to integer

val = hex(~string '0xFF')
val is now a number with value 255, converts a hexadecimal string to integer

val = oct(~string '0666')
val has now the value 438, converts octal string to integer

Function for strings

empty = emptystring()
empty now holds a string with no letter in it – the empty string. The length of the empty string is 0
characters; the expression size(~arg emptystring()) returns 0.

nl =newline()
nl now holds a string that holds a delimiter between lines – the newline string.

numberofelements = size(~arg 'abcde')
numberofelements has now the value 5, the number of characters in the argument string

leftmost = left(~string 'abcdefg' ~length 3)
leftmost now has the value 'abc' ; that is the first three characters of the argument string.

rightmost = right(~string 'abcdefg' ~length 3)
rightmost now has the value 'efg' ; that is the last three characters of the argument string

pos = find(~hay 'the fox runs' ~needle 'fox')
pos now has the value 5; If the string value of argument ~needle is found in the string value of argument ~hay;
then the position of the match is returned; position starts with 1; if no match is found 0 is returned.

middle = mid(~string 'abcdefg' ~offset 2 ~length 3)
middle now has the value 'bcd' that is three characters cut out of the argument string, starting with the
second character in the string.

middle = mid(~string 'abcdefg' ~offset 3)
middle now has the value 'cdefg' that is the remaining 5 characters cut out of the argument string,
starting with the third character in the string. The remaining string length is assumed when the ~length
parameter is not passed.

middle = mid(~string 'abcdefg' ~length 3)
middle now has the value 'abc' that is the 3 characters cut out of the argument string, starting with the
first character in the string; the first character is the offset when parameter ~offset is not passed.

array = split(~string 'the quick brown fox')
array = split(~string 'the:quick:brown:fox' ~separator ':')

variable array will now hold the following value ['the', 'quick', 'brown', 'fox'].

The function split takes the argument string (~string parameter) and splits it up into words; by default
the words are separated by spaces or tabs.
The optional parameter ~seperator sets a different set of seperator characters if it is passed (the
parameter is optional).

Function for arrays

array = append(~array [1, 2, 3] ~add [4, 5, 6])
array has the value [1, 2, 3, 4, 5, 6]

string = join(~array ['first', 'second', 'third'] ~separator '-')
string has the value 'first-second-third'

top = pop(~array [1, 2, 3, 4])
top has the value 4
after the call the argument array changes to [1, 2, 3]

If an empty array is passed to the function pop, an error occurs and the program exits.

push(~array [1, 2, 3] ~top 4)
after the call, the argument array has the value [1, 2, 3, 4]

array = range(~from 1 ~to 4)
array has the value [1, 2, 3, 4]

array = range(~from 1 ~to 10 ~step 2)
array has the value [1, 3, 4, 6, 7, 9]

array = reverse(~array [1, 2, 3, 4])
array has the value [4, 3, 2, 1]

top = shift(~array [1, 2, 3, 4])
top has the value 1
after the call, the argument array has the value [2, 3, 4]

unshift(~array [2, 3, 4] ~first 1)
after the call, the argument array has the value [1, 2, 3, 4]

array = [10 , 3, 1, 5, 4, 9, 6, 7, 8, 2]
array = sort(~array a ~func cmpnum)

sub cmpnum(a, b)
 if a < b
 return -1
 elsif a > b
 return 1
 else
 return 0;
 end
end

Sorts an array by the order specified by function argument ~func; this function is supposed to
1. receive two arguments, each of them is the value of an element in the array
2. compare the two elements of the array and

• return -1 if the first argument is smaller than the second argument
• return 0 if the first and second arguments are equal
• return 1 if the first argument is larger than the second argument

The result of the function is that the argument array (argument ~array) is now sorted, it has the value
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

res = filtercopy(~array [1, 2, 3, 4, 5, 6] ~func iseven)

sub iseven(arg)
 return arg %2 == 0
end

The value of array res is now [2, 4, 6]. The argument ~array is an input array ; the function value
passed in argument ~func is applied on all elements of the input array ; if the result is not zero (true)
then the result is appended to the output array.

res = mapcopy(~array [1, 2, 3, 4] ~func inc)

sub inc(arg)
 return 1 + arg
end

The value of res is now [2, 3, 4, 5]; The argument ~array is an input array ; the function value passed
in argument ~func is applied on all elements of the input array and the results form a new array that is
returned as output.

array = [1, 2, 3, 4]
mapreplace(~array array ~func inc)

sub inc(arg)
 return 1 + arg
end

The value of array is now [2, 3, 4, 5]; The argument ~array is an input array ; the function value passed
in argument ~func is applied on all elements of the input array; the entries of the input array are
replaced with the return value of the applied function.

foldfirst2last(~array [1, 2, 3, 4] ~initval 42 ~func sum)

sub sum(a,b)
 return a + b
end

The function performs the following computation:

 x1=sum(~a initval ~b 1)
\

 x2=sum(~a x1 ~b 2)
 \

 x3=sum(~a x2 ~b 3)
 \
 x4=sum(~a x3 ~b 4)

The result of the computation is the value x4.

Or the whole thing can be written as

result = sum(~a sum(~a sum(~a sum(~a initval ~b 1) ~b 2) ~b 3) ~b 4)

foldlast2first(~array [1, 2, 3, 4] ~initval 42 ~func sum)

sub sum(a,b)
 return a + b
end

The function performs the following computation:

 x1=sum(~a initval b 4)
 /
 x2=sum(~a x1 ~b 3)

 /
 x3=sum(~a x2 ~b 2)
 /
 x4=sum(~a x3 ~b 1)
The result of the computation is the value x4.

Or the whole thing can be written as

result = sum(~a sum(~a sum(~a sum(~a initval ~b 4) ~b 3) ~b 2)
~b 1)

Functions for tables

array = each(~table { 'a' : 1 , 'b' : 2, 'c' : 3 })
arrray has not the value { ['a', ->1] , ['b', ->2], ['c', ->3])
The entries of array are arrays with two elements,
the first element is a copy of the key
the second element is a reference to the value

array = values(~table { 'a' : 1 , 'b' : 2, 'c' : 3 })
array has now the value [→ 1, → 2, → 3]
Note that the entries of array are references to the actual values stored in the table.

array = keys(~table { 'a' : 1 , 'b' : 2, 'c' : 3 })
array has now the value ['a', 'b', 'c']
Note that the entries of array are copies of the keys held in the table.

haskey = exists(~table { 'a' : 1 , 'b' : 2, 'c' : 3 } ~key 'c')
haskey has the value 1, the key 'c' appears in the argument table.
haskey = exists(~table { 'a' : 1 , 'b' : 2, 'c' : 3 } ~key 'd')
haskey has the value 0, the key 'd' does not appear in the argument table.

erase(~table { 'a' : 1 , 'b' : 2, 'c' : 3 } ~key 'c')
after the call, the argument table is { 'a' : 1 , 'b' : 2 }

Miscellaneous functions

Numberofelements = size(~arg [1, 2, 3, 4])
Numberofelements has now the value 4, the number of elements in the argument karray

Numberofelements = size(~arg { 'a' : 1 , 'b' : 2, 'c' : 3 })
Numberofelements has now the value 3, the number of elements in the argument table

Numberofcharacters = size(~arg 'hello world')
Numberofcharacters has now the value 11, the number of characters in the argument string.

val = null
isDefined = defined(~arg val)
isDefined has now the value 0 , the argument is null, it is not defined.

Num = 42
isDefined = defined(~arg Num)
isDefined has now the value 1 , the argument is not null, it is well defined.

Val = 42
Name= type(~arg Val)
Name has now the value 'Number' – the argument is a number

Val = 'Hello world'
Name= type(~arg Val)
Name has now the value 'String' – the argument is a character string

Val = [1, 2, 3, 4]
Name= type(~arg Val)
Name has now the value 'Array' – the argument is a array

Val = { 'a' : 1, 'b' : 2 }
Name= type(~arg Val)
Name has now the value 'Table' – the argument is a table

sub aaa()
end
Name= type(~arg aaa)
Name has now the value 'Function' – the argument is a table

dump

exit(~status 0)
Exits the program with status passed in ~status parameters

exit(~status 1 ~msg 'ay ay ay')
Exits the program with status passed in ~status parameters, the optional parameter ~msg is a message
that is printed before exiting the program. In this instance it complains loudly about the apparent lack
of honey; ay ay ay

showstack()

Shows the current call stack, that is the sequence of all functions calling each other,
Shows function parameters and the local variables of each function.

trace

rval = dump(~arg [1, 2, 3])

rval is now the string '[1, 2, 3]'

rval = dump(~arg { 'a' : '1', 'b' : 2 })

rval is now the string ''{ 'a' : 1. 'b' : 2 }'

the function dump receives any value and prints out its values.

name = osname()
variable name is now the name of the operating system that we are running on.

Input Output and files

print(~msg 'hello world')

writes the string 'hello world' to the standard output stream of the current terminal.

println(~msg 'hello world')

writes the string 'hello world' followed by newline delimiter to the standard output stream of the current
terminal.

file = open(~filename 'aaa.txt')

Opens the file with file name aaa.txt for reading. Returns a table – this is the object used to access the
file.

file = open(~filename '>aaa.txt')

Opens the file with file name aaa.txt for writing, overwrites the file and starts it from scratch.

File = open(~filename '>>aaa.txt')
Opens the file with path name aaa.txt for writing, appends data to the end of the file.

The hash table that is returned by the open function is used as follows:

if size(~table File) == 0
 println(~msg 'the file aaa.txt' does not exit
end

Open failed to open the file, if the returned table is an empty table; that is it has not elements in it;

In order to read from the file

buf = emptystring()
numread = File . read(~toread buf ~numread 1000)
This reads up to 1000 characters (the argument ~numread) into the string buf (argument ~toread)
The function returns the number of characters that have been read; -1 is returned if an error ocurred.

buf = []

numread = File . read(~toread buf ~numread 1000)

If ~toread parameter receives an array, then binary data is read from the file. Each element of the array
is a byte value ranging from 0 to 255. The function returns the number of characters read, -1 is returned
on error.

Buf = 'Hello World'
numwrite = File . write(~towrite Buf)

Here the string value 'Hello World' is written into the file. The function returns the number of
characters written, -1 is returned on error.

Buf = 'Hello World'
numwrite = File . write(~towrite Buf ~numwrite 5)
Here the first five (value of ~numwrite) character of the argument string are written. The function
returns the number of characters written, -1 is returned on error.

Buf = [1, 2, 3, 4, 5]
numwrite = File . write(~towrite Buf)
a sequence of bytes as specified by argument buffer Buf (argument ~towrite) are written.
Each byte is an integer value between 0 and 255. The function returns the number of characters written,
-1 is returned on error.

Buf = [1, 2, 3, 4, 5]
numwrite = File . write(~towrite Buf ~numwrite 3)
The first three bytes (argument ~numwrite) from the argument buffer (argument ~towrite) are written.
The function returns the number of characters written, -1 is returned on error.

File . close()
closes the file; we will not be able to read or write from the object after this call.
If file object is discarded, because it is no longer referenced, then the file is closed.

Lines = readlines(~file File)
println(~msg 'the first line ' .. Lines[1])

The argument ~file is a table that has a read function as specified by the file process; currently this can
be a File (returned by open) or a pipe (returned by openpipe), or any other object provided by the user.

This object is referred to as the data source.

Reads all data from the data source and breaks it up into lines, each line is an entry in the array value
returned by readlines. It is assumed that lines are separated by the newline character.

Lines = readlines(~file File ~separator ':')
println(~msg 'the first line ' .. Lines[1])

Reads all data from the data source and breaks it up into fields; each field is separated by ':' delimitor
(argument ~separator)

fsize = filesize(~filename 'aaa.txt')
if fsize != -1
 println(~msg 'the file aaa.txt is ' .. fsize .. ' bytes long')
else
 println(~msg 'the file aaa.txt does not exist')
end

The argument ~filename of the function stat is the name of a file. The value -1 is returned if the file
does not exist or we do not have permission to access the file. The size of the file in bytes is returned if
the file exists

finfo = stat(~filename 'aaa.txt')
if size(~arg finfo) != 0
 for k keys(~table finfo)
 println(k .. ' ' .. finfo{ k })
 end
else
 println(~msg 'the file aaa.txt does not exist, or not allowed to access')
end

The argument ~filename of the function stat is the name of a file. If the file does not exist then an
empty table is returned, a table with no entries in it; if the file exists then a table is returned, the table
has entries for each of the files properties

The entries
'dev' ID of device containing file
'ino' Inode number
'mode' Protection mask
'link' Number of hard links

'uid' User id of owner

'gid' Group id of owner
'rdev' Device id
'size' Size of file in bytes
'blksize' Block size for file system io
'blocks' number of 512B blocks allocated
'atime' Time of last access
'mtime' Time of last modification
'ctime' Time of last status change

isok = canread(~filename 'aaa.txt')
isok is 1 (true) if the file 'aaa.txt' can be read.
isok is 0 (false) if the file 'aaa.txt' can not be read

isok = canwrite(~filename 'aaa.txt')
isok is 1 (true) if the file 'aaa.txt' can be written.
isok is 0 (false) if the file 'aaa.txt' can not be written

isok = canrun(~filename 'aaa.sh')
isok is 1 (true) if the file 'aaa.sh can be run; i.e. the program aaa.sh can be executed.
isok is 0 (false) if the file 'aaa.sh' can not be run; i.e. the program aaa.sh can be executed.

arrayoffilenames =listdir(~pattern '*.c')

the function listdir searches for all file names of the pattern '*.c' in the current directory and returns an
array of the file names that match the pattern.

arrayoffilenames =listdir(~pattern ['*.c' , '*.h'])

the function listdir searches for all file names that match '*.c' or '*.h' in the current directory and returns
an array of the file names that match one of the pattern.

Processes

[status, output]=run(~cmdline 'ls ~')

The function runs the command specified by parameter ~cmdline (in this case a listing of the home
directory is made). The function run returns an array with two entries

– first array entry is the exit status of the command
– second array entry is what the command wrote to standard output stream.

The command is run in the current users shell.

system(~cmdline 'rm -rf /')

The function runs a process and waits until the process finishes. The command line is specified by the
~cmdline argument. In this case the command tries to delete the computers file system, it might
succeed if the current user has root privileges, but that's another story.

The value of the argument is passed to the system's command shell for parsing; this is /bin/sh -c on
Unix platforms, but varies on other platforms.

Pipe = openpipe(~cmdline 'tr a A')

The function runs a process as specified by the command line (argument ~cmdline). The function
returns a table object – this is the object used to communicate with the process. In this example we run
a process that reads its input from standard input and writes the output to standard output; the command
translates all lower case a letters to upper case A letters.

If the process failed to start, an empty table is returned ; meaning that the expression size (~ Pipe) == 0
is true

The table has the field Pipe['pid'] If the process started successfully; This field is the process id of
launched process.

Pipe . write(~towrite 'Hello world')

Writes the string 'Hello World' to the pipe; the process started by openpipe will be able to read this data
from its standard input file.
All other combinations of the write function are supported; please see the documentation for open for
more details.

buf = emptystring()
Pipe . read(~toread buf)
Reads from the pipe connection; when the process started by openpipe has written something to
standard output, then data becomes available for use to read. All other combinations of the read
function are supported; please see the documentation for open for more details.

Pipe . closewrite()
Closes the pipe to standard output file of the process; we will not be able to write to the pipe object

after this call.

Pipe. closeread()
Closes the pipe to standard input file of the process; we will not be able to read from the pipe object
after this call.

status = Pipe. wait()
Closes both intput and output pipes; waits until the process finishes; the exit status of the process is
returned by wait.

If pipe object is discarded, because it is no longer referenced, then the process will be stopped with
signal SIGKILL.

kill(~pid 12345 ~signal 9)

Sends signal 9 to process identified by process id 12345

Time related functions

tm = time()

Tm is now the current time, the number of seconds that have passed since seconds since 0 hours, 0

minutes, 0 seconds, January 1, 1970, Coordinated Universal Time, without including leap seconds.

[secs, minutes, hour, dayofmonth, month, year, dayofweek, isdaylightsaving] = localtime()
[secs, minutes, hour, dayofmonth, month, year, dayofweek, isdaylightsaving] = localtime(~epoch tm)

If the function is called without parameters, then the current time is broken down into component
values, relative to the current timezone. These components values are returned in an array.

The function may receive an argument ~epoch – the time in epoch seconds, this is a time value returned
by the time function

[secs, minutes, hour, dayofmonth, month, year, dayofweek, isdaylightsaving] = gmtime()
[secs, minutes, hour, dayofmonth, month, year, dayofweek, isdaylightsaving] = gmtime(~epoch tm)

If the function is called without parameters, then the current time is broken down into component
values, relative to the UTC timezone (universal time zone). These components values are returned in an
array.

The function may receive an argument ~epoch – the time in epoch seconds, this is a time value returned

by the time function

sleep(~delay 3)
The program does nothing for three seconds

sleep(~delay 3 ~units 1)
The program does nothing for three milliseconds

sleep(~delay 3 ~units 2)
The program does nothing for three microseconds

Functions for green threads (threads are also known as pooh routines)

makethread

Some explanation of the concept of green threads, which are also known as pooh routines.

When a regular function is called, the statements that make up the body of the function are evaluated,
when the function is completed, the computer magically return to the spot from where the function was
called and then continues to evaluate from right after the function call.

Threads are different: A thread is a unit that call its own functions, as usual. Each such thread performs
a task of its own. Now lets imaging two threads. The consumer of honey thread – also known as the
Bear thread, and the producer of honey thread the Bee thread.

Imagine the consumer thread, the Bear thread; the Bear is always busy with playing, humming and
visiting Christopher robin or his many friends. From time to time the Bear thread is hungry. The bear
thread calls the resume function on the bee thread, the Bear thread goes to sleep until it gets the data
back from the Bee thread.

The bee thread is resumed; Imaging the producer thread of bees; the bees are always busy in a loop
with sending scout bees to find new flowers, then send out the worker bees to gather the nectar and
bring it back to the he beehive; the worker bees have to stack up the honey somewhere. From time to
time some new honey is ready; the problem is that you can't just stop the bee thread and return to a
calling function, as if it were a regular function, that would mess up the state of the bees. So the bee
thread passes the honey data to the function yield, which suspends the bee thread, passes the data back
to the calling Bear thread,

Now the Bear thread is once again active, the resumethread function returns with the data it received
from the bee thread (the honey if you have noticed).

Note that only one process is active at a given time; the other threads are suspended.

Also with this example we all know now why green threads are known as Pooh routines.

th := makethread (~func myrange)

sub myrange(from, to)
 i = from
 while i <= to
 threadyield0(~yieldval i)
 i = i + 1
 end
end
thread(~from 1 ~to 10)

The function makethread takes a regular function and returns a function reference marked as thread. A
new thread is created when calling the function via returned reference.

[isrunning, yieldvalue] = threadyieldvalue(~thread th)

for the user of a thread: this function returns the first yield value of the thread th; Note that a thread is
started as if it where a function, so the yield value cannot be returned as thread function return value,
hence this function.

[isrunning, value] = resumethread(~thread th)
[isrunning, value] = resumethread(~thread th ~message msgtothread)

Given that thread th (argument ~thread) is suspended; resumes the thread th and suspends the current
thread. The current thread is resumed again, when the thread th calls threadyield0 or threadyield; the
return value of resumethread is an array with two elements: the first one is a status isrunning is 1 if
thread th can be resumed (i.e. it has not stopped). The second value is the yield value of thread th; the
value that th has passed to threadyield0 or threadyield.

[requestexit, msgtothread] = threadyield(~yieldval value)
[requestexit, msgtothread] = threadyield()

Assumes that the current thread is a pooh thread; that means it has been started via call to function
reference returned by makethread.

The function threadyield suspends the current thread, and passes control back to the thread that started
it, the argument value value of parameter ~yieldval is passed back to the calling thread. If the current
thread has just been started, then the calling thread can get this value from return value of function
threadyieldvalue ; if we have been activated via call to resumethread then return value of resumethread
will be the yield value. The parameter ~yieldval is optional; if it is not given then Null value is passed
to the calling thread as the yield value.

Return values: the function threadyield returns an array with two values.

• The first value requestexit; if this value is not zero (true) then the calling thread has just called
stopthread ; this means that our thread is supposed to clean up any resources that it owns and
exit. Owned resources that need clean up are files - for example.

• The second value msgthread; this is the value that resumethread function passes as ~message
parameter. Null is returned if the function did omit the ~message parameter.

msgtothread = threadyield0(~yieldval value)
msgtothread = threadyield0()

Assumes that the current thread is a pooh thread; that means it has been started via call to function
reference returned by makethread.

The function threadyield0 suspends the current thread, and passes control back to the thread that started
it, the argument value value of parameter ~yieldval is passed back to the calling thread. If the current
thread has just been started, then the calling thread can get this value from return value of function
threadyieldvalue ; if we have been activated via call to resumethread then return value of resumethread
will be the yield value. The parameter ~yieldval is optional; if it is not given then Null value is passed
to the calling thread as the yield value.

The function threadyield0 returns the value that resumethread function passes as ~message parameter.
Null is returned if the function did omit the ~message parameter.

If the current thread (thread th) is resumed, and the calling thread requests to stop the thread by calling
stopthread, then this thread is finished. So this function is suitable if thread th does not hold any
resources that need to be cleaned up; resources like files need to be closed for example.

threadexit()

A running thread calls this function to finish and exit. Equivalent to returning from the threads main
function.

stopthread(~thread th)

stops a running thread; if th is a function reference to a thread (marked by makethread) and the thread
is running. The current thread is suspended and thread th is resumed;

• if thread th has been suspended due to calling function threadyield, then function threadyield
returns status 0; that means the thread must clean up any owned resources and exit.

• If thread th has been suspended due to calling function threadyield0, then the thread finishes;
this is suitable if thread th does not hold any resources that need to be cleaned up; resources like
files need to be closed for example.

isthreadmain()

A thread function returns 1 if it has been started as thread; i.e. the function has been marked by
makethread and then called via return value of makethread. This is useful if you want to write a
function that is a thread on the one hand, and behaves as a regular function when called as a regular
function. For example the range function returns an array when called as a regular function, but is a
thread when used from a for loop.

	Pooh functions by category
	Function for numbers
	Converting strings to numbers
	Function for strings
	Function for arrays

	Functions for tables
	Miscellaneous functions
	Input Output and files
	Processes
	Time related functions
	Functions for green threads (threads are also known as pooh routines)

