
Introducing the Pooh programming language for kids and grown
ups

Expressing data..1
Variables...1
Numbers and numeric expressions...2
Strings...3
Relational expressions - Comparing numbers..4
Relational expressions - Comparing strings...4
Arrays...5
Tables..6
Null values..6
References to values...7

Statements...7
Assignment...8
If .. elsif .. else...8
While loops ..9
Functions also known as proceedcake..10

 ..11
More tricks with functions...11

Functions and variable scope..12
Green threads also known as pooh routines..12

Expressing data
In which we talk about the kinds of data that the computer knows about, and how to name the data so
that it can be of use to us.

Variables
Variables are places in the computers memory where values are stored;
In a program, each variable has a name, a variable name must be one or
more characters in length and must begin with a letter or underscore.
The characters allowed in variable names are letters, numbers and the
underscore sign

Some examples:
Valid variable names: X , A9 , Not_equal
Invalid variable names: _a , 9b , another%bug

Example: var-env.p
a = 2
b = a * a
c = a + b

pooh -x var-env.p

A variable is defined when it is assigned a value; this happens when the
variable name is placed left of the = sign and the value that is assigned
to the variable is placed to the right of the = sign. See example var-env.p

When a variable stands to the right of the = sign, its value is looked up
and used. It is an error to use a variable that is not defined. See example
var-inv.p

The following names are reserved words and may not be used as
variable names, these names are reserved for other purposes.

and break byref elseif elsif end eq false False
for ge gt if include lg loadextension loop ne
next null Null not optional or return sub true
True while

001|a = 2
002|b = (a:2 * a:2):4
003|c = (a:2 + b:4):6

Example: var-inv.p
b = a * a

pooh var-inv.p
Error: variable a is used without
having been assigned a value
1. |b = a * a
 |....^

Numbers and numeric expressions
A floating point number is expressed as a base number
(mantissa) times 10 raised to some power (exponent)

Number = Mantissa x 10 Exponent

A floating point constant is expressed by first writing the
Mantissa then E and then the exponent

A numeric expression performs a calculation on numbers, the
expression returns the result of the calculation.

operators that take two arguments are
 a + b add the value of a to b
 a - b substract the value of b from a
 a * b multiply the value of a times value of b
 a / b divide the value of a a by b
 a ^ b returns a raised to the power of b
 a % b returns the remainder of dividing a by b.

Parenthesis can be used to group operations; an expression
within parenthesis is computed first, before computing the
result outside of the parenthesis. See example var-par.p

Number Expressed as
3.245 x 10 4 3.245E4
-42 x 10 22 -42E22 or -0.42E24
5.6 x 10 -4 5.6E-4 or 0.56E-5

Example: var-par.p
a = 2
b = 3
c = (a + 1) * (b + 3) / (a * b)

pooh -x var-par.p
001|a = 2
002|b = 3
003|c = (((a:2 + 1):3 * (b:3 + 3):6):18 /
(a:2 * b:3):6):3.000000e+00

Strings
A string is a character sequence of any length. A string
constant is enclosed in ' quote characters. Space characters
are part of the string. Strings are values and can be assigned
to variables.

A string constant can span multiple lines.

Two or more string or integer values can be joined into one
string by means of the .. operator. The .. operator has two
arguments, the value of the argument to the right of the
operator is appended to the value of the argument that stands
left of the operator.

One can join multiple values, If one writes
 a = b .. c .. d .. e
than that is equivalent to
 a = ((b .. c) .. d) .. e)

See example var-s1.p – Note that println line takes the value
of e and prints it on the screen.

A string can have embedded expressions. The text that is
enclosed between [and] brackets is an expression, the value
of the expression is computed and the result is inserted into
the resulting string.

For example the expression
 a = 'string area of [a ^ 2] square meters'
is logically to
 a = 'a string area of ' .. (a ^ 2) .. ' square meters'

The brackets are a convenient shorthand for joining strings
and expressions. See example var-ex.p – Note that println
line takes the value of e and prints it on the screen.

If you want to write text that contains a single opening or
closing bracket, then the bracket would be misinterpreted as
the start of an embedded expression. To avoid this use two '
colon delimiters for the start and end of a string. In this case
the start of an embedded expression is [[and the end of an
embedded expression is]]

Because of this rule, it is difficult to express an empty
string.The function emptystring() returns the value of an
empty string. The empty string is 0 characters in length. See
example var-empty.p

Example string
string_variable = 'hello world'

a = 'a string spanning
two lines'

Example: var-s1.p
a = 'words '
b = 'form '
c = 'sentences '
d = 42
e = a .. b .. c .. d
println(~msg e)

pooh -x var-s1.p
002|a = 'words '
003|b = 'form '
004|c = 'sentences. '
005|d = 42
007|e = a:'words ' .. b:'form ' .. c:'sentences. ' ..
d:42
008|println(~msg e:'words form sentences.
42')...
words form sentences. 42

Example: var-ex.p
a = 3
b = 'Square with side [a] has an area of [a ^ 2]
square meters'
println(~msg b)

pooh -x var-ex.p
001|a = 3
002|b = 'Square with side ' .. a:3 .. ' has an area
of ' .. (a:3 ^ 2):9 .. ' square meters'
003|println(~msg b:'Square with side 3 has an
area of 9 square meters')...
Square with side 3 has an area of 9 square
meters

a = ''string with [bracket ''
a = '' string with [bracket [[42]] ''

Example var-empty.p
empty = emptystring()
println(~msg 'the empty string is [size(~arg
empty)] characters long')

pooh -x var-empty.p
001|... = emptystring()...
001|empty = emptystring():''
002|println(~msg 'the empty string is ' ..

Another function is newline() it returns the delimiter string
between lines of text.

size(~arg empty:'')...
002|println(~msg 'the empty string is ' ..
size(~arg empty:''):0 .. ' characters long')...
the empty string is 0 characters long

Relational expressions - Comparing numbers
Relational expressions check if a specific statement is true or
not true; For example the relation expression a < b checks if
variable a holds a number that is smaller then number b.

The result of a relational expression is itself a number 1 if
the relation is true (in the above example: the value of a is
indeed smaller then b) and 0 if the relation is false (the value
of a is bigger or equal to b);

Relation expressions are used in statements such as the If
statement. In the example stmt-if.p the If statement checks if
the value of a is smaller then b, if this condition is true the
string 'The value of a is smaller then b' is shown; if the
condition is false, then the string 'The value of a is bigger or
equal to a'

There are the following kinds of relational expressions
between numbers
 a == b The number value of a is equal to b
 a != b The number value of a is not equal to b
 a < b The number value of a is smaller than b
 a <= b The number value of a is smaller or equal to b
 a > b The number value of a is bigger than b
 a >= b The number value of a is bigger or equal to b

If a or b holds a string value, then this string is converted
into a number, before the expression is checked.

Example: stmt-if.p
a = 42
b = 2
if a < b
 println(~msg 'The value of a
is smaller than b')
else
 println(~msg 'The value of a
is bigger of equal to a')
end

pooh -x var-s1.p
001|a = 42
002|b = 2
003|if (a:42 < b:2):false
004|else
006| println(~msg 'The value of
a is bigger or equal to a')...
The value of a is bigger or
equal to a
006|end # if

Relational expressions - Comparing strings
A number may have different annotations; for example the
number 1 is equal to the number 1.0 which is equal to the
number 1.0E1

However the string values '1' '1.0' and '1.0E1' are all
different. This is the reason why we have a different set of
relational expressions for strings than for numbers.

There are the following kinds of relational expressions
between numbers
 a eq b The number value of a is equal to b
 a ne b The number value of a is not equal to b
 a lt b The number value of a is less than b
 a le b The number value of a is less or equal to b
 a gt b The number value of a is greater than b
 a ge b The number value of a is greater or equal to b

If a or b holds a integer value, then integer value is converted
into a string format before the expression is checked.

Arrays
An array contains a numbered sequence of values; think of
an array V as owning a sequence of entries: v1 v2 v3 v4 …. An
value of the subscript identifies its value, so by having a
sequence number, say 2, you can look up the value v2 from
the array.

An array variable is defined when an array value is assigned
to a variable name.

ArrayVariable = []

The value [] is an empty array without any entries.

ArrayVariable = [2, 'aaa', 3]

Here ArrayVariable gets the value of an array, where the first
element of the array is the number 2, the second element of
the array is the string 'aaa' and the third element is the
number 3.

The expression ArrayVariable[1] returns the first element of
the array value ArrayVariable – the number 1

The expression ArrayVariable[4] is special, since we did not
define an entry with the index 4, the computer can't return
its value, instead the expression will return the special Null
value; which stands for 'no this value does not exist at all'.

Note the angular brackets [] that are placed around the key
index – which identifies the values that is stored in the array.

println(~msg 'The first element is ' .. ArrayVariable[1])

This expression prints out the string 'aaa' the second element

Example var-vec.p
array = [1, 3, 5, 7, 11]

println(~msg 'the first prime is ' .. array[1])
println(~msg 'the fourth prime is ' .. array[4])
println(~msg 'the fifth prime is ' .. array[5])

pooh -x var-vec.p
001|array = [1 , 3 , 5 , 7 , 11]
003|println(~msg 'the first prime is ' ..
array[1]:1)...
the first prime number is 1
004|println(~msg 'the fourth prime is ' ..
array[4]:7)...
the fourth prime number is 7
005|println(~msg 'the fifth prime is ' ..
array[5]:11)...
the fifth prime number is 11

of the array.

The first element is 1

Tables
A table owns a set of entries, each entry is
identified by its own key value. The key value
can be a string, and integer, in fact any value!

An table variable is defined when an table
value is assigned to a variable name.

TableVariable = {}

The value {} is an empty table without any
entries.

Please look at the example var-hash.p . Here
the table myTable gets a table value which:
 - maps the key 'aaa' to the value 1
 - maps the key [1, 2, 3] to the value 222222
 - maps the key 42 to a function without a
name (also known as anonymous function).
This function prints out the string 'hello world',
when it is called.

The expression myTable['aaa'] returns the
value 1, which is identified by the key 'aaa'.

Note the brackets { } that are placed around the
key index – which identifies the values that is
stored in the table.

The expression myTable['kuku'] is special,
since we did not define an entry with the index
'kuku', the computer can't return its value,
instead the expression will return the special
Null value; which stands for 'no this value does
not exist at all'.

Example: var-hash.p
myTable = { 'aaa' : 1,
 [1, 2, 3] : 222222,
 42 : sub ()
 println(~msg 'hello world')
 end
 }
println(~msg myTable{ 'aaa' })
println(~msg myTable{ [1, 2, 3] })
myTable{ 42 } ()

pooh -x var-hash.p
001|myTable = { 'aaa' : 1 , [1 , 2 , 3] :
222222 , 42 : sub () }
007|println(~msg myTable{'aaa'}:1)...
1
008|println(~msg myTable{[1 , 2 , 3] }:222222
)...
222222
009|myTable{42}:sub ()...
004| println(~msg 'hello world')...
hello world

Null values
If the program is looking up a value of an array or
table entry, and no entry with the given key exists,
then the Null value is returned;

Example: var-null.p
array=[]
a = 42
if array[10] != Null

The null value is special; it means 'no this value does
not exist at all'. One may not add a Null value to a
number ;

One can't add a Null value to a number, using the
Null value in an arithmetic expression results in an
error.

The can test if an expression yields the null value or
not; example var-null.p first checks that array[10] is
not a null value; only if this is not true then it proceeds
to use the value in a computation.
This is done by the if statement; the statements within
the if statement are done only if the condition
(array[10] is not equal to Null) is true.

 b = array[10]
 c = a + b
end

pooh -x var-null.p
001|array = []
002|a = 42
004|if (array[10]:Null != Null):false
006|end # if

References to values
Sometimes two different variable name may refer to the
same data entry.

Normally the = sign (assignment operator) copies the value
of the left hand side into the variable name that stands to the
right of the operator sign.

The operator := creates an alias; the variable name to the left
of the operator := will refer to the same value as the
expression to the right of the operator.

Please see the example var-ref.p. The value a holds the string
'bbb'; the variable b now refers to the same value as owned
by the variable a.
When the variable a is assigned a different value (the value
'bbb') the variable b will then refer to the new value of a.

Please note: You can refer to the value of an alias (reference)
in the same way as you can refer to the value of a real value!

This is different to most other programming languages,
where one has an explicit construct that will look up the
value of a reference. In the Pooh language you are spared
these confusing details.

Example: var-ref.p
a = 'aaa'
b := a
a = 'bbb'
println(~msg b)

pooh -x var-ref.p
001|a = 'aaa'
002|b := a:'aaa'
003|a = 'bbb'
004|println(~msg b:->
'bbb')...
bbb

Statements
In which we talk about how to change data, and how to tell the computer to do stuff.

Assignment
The assignment statement allows to give a specific value
to variable name.

VariableName = <expressions>

When the program is run, the value of the expression is
computed, and because of the assignment statement, the
variable VariableName will then refer to this computed
value.

If a variable name has never been assigned a value, it is
not defined and its value can't be used in a computation.
In the pooh language the program will not be able to run
at all. You will have to fix this problem and then try run
the program again.

If .. elsif .. else
The if statement is used to decide on a course of action in a program; It
has the following form.

If <expression>
 <one or more statements>
end

If the expression is true, that is the value of the expression is not 0, then
all statements that follow up until the end keyword are evaluated. The
example stmt-if0.p shows that off.

If <expression>
 <plan A: one or more statements>
else
 <plan B: one or more statements>
end

This previous form expresses a choice with an alternative, if the
expression is true, that is the value of the expression is not zero, then
the set of statements after the if up until the keyword else is evaluated;
otherwise, if the expression if false, that it it has the value 0, then the
alternative course of action is taken, all statements right after else up
until the end keyword are evaluated.

One can also do multiple choices

if <expression>
 <planA : one or more statements>
elseif <expression>

Example stmt-if0.p
a = 42
b = 2
if a > b
 println(~msg 'The
value of a is smaller
than b')
 println(~msg 'and
now lets have a party!'
)
end

pooh -x stmt-if0.p
001|a = 42
002|b = 2
003|if (a:42 >
b:2):true
004| println(~msg 'The
value of a is smaller
than b')...
The value of a is
smaller than b
005| println(~msg 'and
now lets have a party!'
)...
and now lets have a
party!
005|end # if

 <planB: one or more statements>
elseif <expression>
 <planC: one or more statments>
else
 <allOtherCases: one or more statements>
end

Incidentially one can write both elsif and elseif are valid keywords that
mean the same thing, that's because I often misspell them.

While loops
The while loop looks as follows

while <condition>
 <one or more statements>
end

If the <condition> is true, that is its value is not
zero then the statements from after the condition
up to the end keyword are executed. After that
condition is checked again, if it is still true, then
again the same statements are evaluated, all this
continues until the condition is false, its value is
false.

The example stmt-while.p computes the sum of
squares for all integer numbers from 1 to 7.
First the variable I is set to one; the while
statement checks that the value of I is smaller or
equal than 7;

sum = sum + i * i

Here the square of value of i is added to the value
of sum. Next the value of I is incremented; this is
very important since otherwise the loop would
have continued for ever, or at least until the
program is stopped by the impatient user.

Now with this knowledge we can write the first
meaningful program, it tells the story of Genesis.

Example: stmt-while.p
i=1
sum = 0
while i <= 7
 sum = sum + i * i
 i = i + 1
end
println(~msg 'sum of squares for integers
from 1 to 7 is ' .. sum)

Example: var-first.p
day = 1
while day < 8

 print(~msg 'Day ' .. day .. ' : ')
 if day == 1
 println(~msg 'Create heaven and earth, create light')
 elsif day == 2
 println(~msg 'Create firmament, divide waters, call firmament Heaven')
 elsif day == 3
 println(~msg 'Gather water into seas, dry land, create grass, herbs and fruit trees')
 elsif day == 4
 println(~msg 'Create lights on firmament, create calendar, create sun and moon, day and night')
 elsif day == 5
 println(~msg 'Create water creatures, birds, big crocodiles, and all other animals, bless to
multiply')
 elsif day == 6
 println(~msg 'Create land animals, Create Man and Woman in His Image/kind, bless and command
to multiply, allow Humans to eat, say it is very good')
 elsif day == 7
 println(~msg 'Shabbes')
 end
 day = day + 1
end

Functions also known as proceedcake
A program may need the same sequence of statements in several
places at ones; one solution is to copy the same statements all over
the program text, however this solution create much headache :
one may have made an error and then the error is then repeated all
over, because the program text that contains the error was copied
many times over. Now instead of fixing the error once you have to
fix thirteen of them; as many as there are copies of the original
text. Bother!

The solution to the problem is called a function: wherever a
function is used, all the statements of the function are evaluated;
on the other hand the function has all them statements in one
place.

We have already encountered uses of functions throughout the
text. See example stmt-func-hello.p uses the function println
shows a message on the screen, followed by a newline delimiter;
each input value has its own name, for the function println the
name of the parameter is ~msg

A more complicated example is stmt-func.p here the function
pythagoras receives two numbers a and b as input, each one stands
for the length of the side of a right handed triangle; the function
returns the length of the third side, by applying the Pythagorean
theorem (the length of the third side is the square root of the sum

Example: stmt-func-hello.p
println(~msg 'hello world')

pooh -x stmt-func-hello.p
001|println(~msg 'hello world')...
hello world

Example: stmt-func.p
sub pythagoras(a, b)
 c = a * a + b * b
 return sqr(~num c)
end
println(~msg 'the third side is ' .. pythagoras(
~a 5 ~b 12))

pooh -x stmt-func.p
005|println(~msg 'the third side is ' ..
pythagoras(~a 5 ~b 12)...
002| c = ((a:5 * a:5):25 + (b:12 *
b:12):144):169
003| return sqr(~num c:169)...
003| return sqr(~num c:169):1.300000e+01

of the squares of the other two sides)

A function is defined by the following form

sub <function_name> (<one or more input parameter names
separated by , >)
 <the statements that are evaluated when function is called>
end

The input values of a function are also called 'parameters' of a
function. The value of a parameters is set when the function is
used / called.

When the function wants to pass a value back to the caller, it has
to use the return statement; the return statement stops the function
and returns to the place in the program where the function has
been called; if return statement is followed by an expression, then
the value of this expression becomes the value of the function
call.

Another important detail: if the function defines a variable (like
the variable c in line 5) then this variable is not visible from where
the function has been called – the variable is local to the function
from where it is defined. (In most other scripting languages all
variables are visible from all places by default – they are global)

If you take a step back, then In a sense a function can be
understood by thinking only about
1) the values that the procedure receives as input when it is used
2) the values that the procedure returns back to the program when
it has finished.

This way of thinking has an advantage: it ignores the details of
each function, so one can build larger programs, because the mind
is freed to remember other things.

The disadvantage of this way of thinking is that it is easy to loose
touch with the details; which is bad because one does no longer
know what to do, as no longer knows how the function work and
why it works and how.
I think that one has to balance between the two extremes, as with
most thing in live.

005|println(~msg 'the third side is ' ..
pythagoras(~a 5 ~b 12):1.300000e+01)...
the third side is 1.300000e+01

More tricks with functions
In which we talk about more tricky functions.

Functions and variable scope
If

.h3 Parameters passed by reference

.h3 Optional parameters

.h3 Functions as values / Call me backson

.h3 Functions without a name

Green threads also known as pooh routines
When a regular function is called, the statements that make up
the body of the function are evaluated, when the function is
completed, the computer magically return to the spot from where
the function was called and then continues to evaluate from right
after the function call.

Threads are different: A thread is a unit that call its own
functions, as usual. Each such thread performs a task of its own.
Now lets imaging two threads. The consumer of honey thread –
also known as the Bear thread, and the producer of honey thread
the Bee thread.

Imagine the consumer thread, the Bear thread; the Bear is always
busy with playing, humming and visiting Christopher robin or his
many friends. From time to time the Bear thread is hungry. The
bear thread calls the resume function on the bee thread, the Bear
thread goes to sleep until it gets the data back from the Bee
thread.

The bee thread is resumed; Imaging the producer thread of bees;
the bees are always busy in a loop with sending scout bees to find
new flowers, then send out the worker bees to gather the nectar
and bring it back to the he beehive; the worker bees have to stack
up the honey somewhere. From time to time some new honey is
ready; the problem is that you can't just stop the bee thread and
return to a calling function, as if it were a regular function, that
would mess up the state of the bees. So the bee thread passes the
honey data to the function yield, which suspends the bee thread,
passes the data back to the calling Bear thread,

Now the Bear thread is once again active, the resume function
returns with the data it received from the bee thread (the honey if
you have noticed).

Note that only one process is active at a given time; the other
threads are suspended.

Example: poohthread.p

sub myrange(from, to)
 i = from
 while i <= to
 threadyield0(~yieldval i)
 i = i + 1
 end
end

thread := makethread (~func myrange)

thread(~from 1 ~to 10)

[running, value] =
threadyieldvalue(~thread th)

while(running != 0)

 println(~msg 'thread returned [value]')

 [running, value] =
resumethread(~thread th)
end

stopthread(~thread th)

Also with this example we all know now why green threads are
known as Pooh routines.

The function makethread takes a function reference and returns a
new special function reference; the returned function reference,
when called will create a new thread.

The new thread will receive its argument from the calling thread.
When the new thread has a result that it wants to pass back, then
it calls threadyield or threadyield0

.h3 For loops

.h3 Higher order functions

.h3 Closures

.h3 Tables as objects

.h3 Recursion

	Expressing data
	Variables
	Numbers and numeric expressions
	Strings
	Relational expressions - Comparing numbers
	Relational expressions - Comparing strings
	Arrays
	Tables
	Null values
	References to values

	Statements
	Assignment
	If .. elsif .. else
	While loops
	Functions also known as proceedcake

		
	More tricks with functions
	Functions and variable scope

	Green threads also known as pooh routines

